Abstract

A flexible experimental apparatus for investigating water hammer and column separation in an unsteady friction-dominated pipelines has been developed and designed. The apparatus has been tested for steady and unsteady flow conditions. Transient cavitation and column separation phenomena have been observed in a number of experimental runs. Water hammer has been triggered by both the closing and opening of electro-pneumatic (EV) and hand-operated (HV) valves. The experimental data have been compared with results given from in-house numerical code written in Visual Fortran based on the method of the characteristics (MOC) with a convolution-based unsteady friction model (CBM) included. The column separation and transient cavitation phenomena are modelled via a discrete gas cavity model (DGCM). There is good agreement between the experimental and numerical results; the model is robust and, therefore, it is recommended for engineering practice. In addition, the influence of variations of the pressure wave speed and the uncertainty in flow rate measured by the electromagnetic flow meter are also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call