Abstract
In this paper, temperature measurements are utilized to develop health indicators based on principal component analysis toward the probabilistic estimation of the remaining useful life (RUL) of reciprocating compressors in service. Temperature degradation histories obtained from 13 actual valve failure cases constitute the training data in a data-driven prognostic approach. Two data-driven prognostic methodologies are presented and proposed based on probabilistic mathematical models, i.e., gradient boosted trees and nonhomogeneous hidden semi-Markov models. The training and testing process of all models is described in detail. RUL prognostics in unseen data are obtained for all models. Beyond the mean estimates of the RUL, the uncertainty associated with the point prediction is quantified and upper/lower confidence bounds are also estimated. Prediction estimates for 12 real-life failure cases are presented and the pros and cons of each model's performance are highlighted. Several metrics are utilized to assess the performance of the prognostic algorithms and conclusions are drawn regarding the prognostic capabilities of each of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.