Abstract

We have derived the analytical kernels of the pricing formulae of the CEV knockout options with time-dependent parameters for a parametric class of moving barriers. By a series of similarity transformations and changing variables, we are able to reduce the pricing equation to one which is reducible to the Bessel equation with constant parameters. These results enable us to develop a simple and efficient method for computing accurate estimates of the CEV single-barrier option prices as well as their upper and lower bounds when the model parameters are time-dependent. By means of the multistage approximation scheme, the upper and lower bounds for the exact barrier option prices can be efficiently improved in a systematic manner. It is also natural that this new approach can be easily applied to capture the valuation of other standard CEV options with specified moving knockout barriers. In view of the CEV model being empirically considered to be a better candidate in equity option pricing than the traditional Black-Scholes model, more comparative pricing and precise risk management in equity options can be achieved by incorporating term structures of interest rates, volatility, and dividend into the CEV option valuation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.