Abstract
We applied state‐contingent theory to climate uncertainty at a farm level to assess the value of seasonal climate forecasts in the Central West region of NSW. We find that modelling uncertainty in a state‐contingent manner results in a lower estimate of forecast value than the typical expected value approach. We attribute this finding to a more conservative long‐term farm plan in the discrete stochastic programming (DSP) model, which is better balanced for climate uncertainty. Hence, a climate forecast, even though it still revises probabilities held by farmers, does not call forth such large changes in farm plans and associated farm incomes. We then use the DSP model to assess how attributes of a hypothetical forecasting system, particularly its skill and timeliness, as well as attributes of the decision environment, influence its value. Lastly, we assess the value of current operational forecast systems and show that the value derived from seasonal climate forecasts is relatively limited in the case study region largely because of low skill embodied in forecasts at the time when major farm decisions are being made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australian Journal of Agricultural and Resource Economics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.