Abstract

Background and aimsUse of zinc (Zn) fertilisers may be cost-effective in increasing crop yields and in alleviating dietary Zn deficiency. However, Zn fertilisers are underutilised in many countries despite the widespread occurrence of Zn-deficient soils. Here, increased Zn fertiliser-use scenarios were simulated for wheat production in Punjab and Sindh Provinces, Pakistan. Inputs and outputs were valued in terms of both potential yield gains as well as health gains in the population.MethodsThe current dietary Zn deficiency risk of 23.9 % in Pakistan was based on food supply and wheat grain surveys. “Disability-adjusted life years (DALYs) lost” are a common metric of disease burden; an estimated 245,000 DALYs y−1 are lost in Punjab and Sindh due to Zn deficiency. Baseline Zn fertiliser-use of 7.3 kt y−1 ZnSO4.H2O was obtained from published and industry sources. The wheat area currently receiving Zn fertilisers, and grain yield responses of 8 and 14 % in Punjab and Sindh, respectively, were based on a recent survey of >2500 farmers. Increased grain Zn concentrations under Zn fertilisation were estimated from literature data and converted to improved Zn intake in humans and ultimately a reduction in DALYs lost.ResultsApplication of Zn fertilisers to the area currently under wheat production in Punjab and Sindh, at current soil: foliar usage ratios, could increase dietary Zn supply from ~12.6 to 14.6 mg capita−1 d−1, and almost halve the prevalence of Zn deficiency, assuming no other changes to food consumption. Gross wheat yield could increase by 2.0 and 0.6 Mt. grain y−1 in Punjab and Sindh, respectively, representing an additional return of US$ >800 M and an annual increased grain supply of 19 kg capita−1.ConclusionsThere are potential market- and subsidy-based incentives to increase Zn fertiliser-use in Pakistan. Benefit-Cost Ratios (BCRs) for yield alone are 13.3 and 17.5 for Punjab and Sindh, respectively. If each DALY is monetised at one to three fold Gross National Income per capita on purchasing power parity (GNIPPP), full adoption of Zn fertiliser for wheat provides an additional annual return of 405–1216 M International Dollars (I$) in Punjab alone, at a cost per DALY saved of I$ 461–619.

Highlights

  • Zinc (Zn) is an essential nutrient for all organisms, with potential roles in 1000s of proteins in plants and humans (Broadley et al 2007)

  • A projected increase in wheat yield in Punjab from 4.0 to 4.3 t ha−1 would translate to an overall increase in production from 29.9 to 32.0 Mt y−1 (Fig. 6c) if the entire current area under wheat production was fertilised with Zn

  • Our analysis shows there are likely to be substantial financial returns from an increase in Zn fertiliser-use in Pakistan, in terms of both yield and public health benefits

Read more

Summary

Introduction

Zinc (Zn) is an essential nutrient for all organisms, with potential roles in 1000s of proteins in plants and humans (Broadley et al 2007). Zn fertilisers remain little utilised globally, and approximately half of all soils used for cereal production are likely to be Zn deficient (Cakmak et al 1999; Alloway 2008; Ahmad et al 2012) These soils include widespread areas of the Indo-Gangetic Plains in South Asia, where intensive rice-wheat cropping systems are practiced Soils of the Indus Plains of Pakistan are mostly derived from calcareous parent material from the Himalayas, which is deposited as alluvial material by the Indus River and its tributaries, or as loess deposits in the northern parts of the Indus Plains (FAO 1973) These calcareous soils support the majority of crop production in Pakistan, which covers 21.4 Mha (PBS 2009). Inputs and outputs were valued in terms of both potential yield gains as well as health gains in the population

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call