Abstract

Evidence from the financial markets suggests that empirical returns distributions, both historical and implied, do not arise from diffusion processes. A growing literature models the returns process as a Lévy process, finding a number of explicit formulae for the values of some derivatives in special cases. Practical use of these models has been hindered by a relative paucity of numerical methods which can be used when explicit solutions are not present. In particular, the valuation of Bermudan options is problematical. This paper investigates a lattice method that can be used when the returns process is Lévy, based upon an approximation to the transition density function of the Lévy process. We find alternative derivations of the lattice, stemming from alternative representations of the Lévy process, which may be useful if the transition density function is unknown or intractable. We apply the lattice to models based on the variance-gamma and normal inverse Gaussian processes. We find that the lattice is able to price Bermudan-style options to an acceptable level of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.