Abstract
A subspace of an algebra with involution is called a Lie skew-ideal if it is closed under Lie products with skew-symmetric elements. Lie skew-ideals are classified in central simple algebras with involution (there are eight of them for involutions of the first kind and four for involutions of the second kind) and this classification result is used to characterize noncommutative polynomials via their values in these algebras. As an application, we deduce that a polynomial is a sum of commutators and a polynomial identity of $d\times d$ matrices if and only if all of its values in the algebra of $d\times d$ matrices have zero trace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.