Abstract

Thermal energy storage (TES) is widely expected to play an important role in facilitating the decarbonization of the future energy system. Although significant work has been done in assessing the values of traditional sensible TES, less is known about the role, impact and value of emerging advanced TES at the system level. This is particularly the case of latent heat thermal energy storage (LHTES) and thermochemical energy storage (TCS). In this context, this paper is dedicated to evaluating the techno-economic values for the whole UK energy system of LHTES and TCS technology using an integrated whole energy system model. First, the key concepts of the whole system modelling framework are introduced. Unique to this work is that the economic benefits delivered by LHTES and TCS to different levels of the UK energy system infrastructure and various energy sectors through the deployment of TES are explicitly analysed, which comprehensively demonstrates the values of selected TES technologies from the whole system perspective. A series of sensitivity studies are implemented to analyse the advantages and disadvantages of LHTES and TCS under different conditions. The simulation results indicate that TES can benefit different sectors of the whole energy system and drive significant cost savings, but the whole system values of TES is closely dependent on the decarbonization requirement. Although LHTES is characterized by relatively low capital costs, when TES penetration is limited and carbon target is tight, the advantage of TCS is outstanding due to its high energy density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call