Abstract
A value-based automated transmission system planning model is presented in this paper and the impact of the various network representations on the results of the model is discussed. Value-based integrated resource planning provides a societal cost (utility operation and investment costs plus customer outage costs) minimizing composite generation-transmission system expansion plan. The model trades-off and compares the costs and benefits of alternative generation and transmission resources using a consistent economic and engineering criterion in order to determine an optimal resource expansion plan. The generalized Benders decomposition algorithm with importance sampling used to solve the problem enables the model to estimate certain average information about scenarios or contingencies by examining only a very small fraction of all the scenarios or contingencies. The impacts of system resources upon both real and reactive power can be analyzed when using the AC power flow equations. It is concluded that for transmission system planning where reactive power flows and voltage constraints are important, it is imperative that an AC power flow model be used. The combination of AC power flow and linearized power flow models, with linearization about the solution of the AC power flow model, was found to be a promising compromise between accuracy and computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.