Abstract
Value-added cement-bonded particleboard (CBPB) was fabricated using processing residues of Masson pine with Portland cement as a binder. Effects of cement-wood ratios and particle lengths on the integrated performance of CBPB were investigated. It showed that Masson pine had a good compatibility with Portland cement, as reflected by a compatible index 83.5% (i.e., greater than 68.0%), which indicated that the Masson pine residues are suitable for manufacturing CBPB. Besides, the physical–mechanical performances of CBPB strongly depended on the cement-wood ratios, and higher cement-wood ratios resulted in the CBPB produced with higher physical and mechanical properties (i.e., greater density, higher modulus of elasticity, enhanced modulus of rupture, increased internal bond strengths, and smaller thickness swelling). However, the particle length of the wood residue was found to have a limited effect on the integrated performance of CBPB. The study also revealed that the thermal conductivity of CBPB increased with the increase of the cement-wood ratios and the particle lengths. Our work herein opens up a new strategy for promote a circular economy by upcycling the wood processing residues into CBPB with admirable comprehensive performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.