Abstract

OBJECTIVEThe gold standard for evaluation of ventriculoperitoneal (VP) shunt position, dislocation, or disconnection is conventional radiography. Yet, assessment with this modality can be challenging because of low image quality and can result in repetitive radiation exposure with high fluctuation in the radiation dose. Recently, CT-based radiation doses have been significantly reduced by using low-dose protocols. Thus, whole-body low-dose CT (LDCT) has become applicable for routine use in VP shunt evaluation. The authors here compared image quality and approximate radiation dose between radiography and LDCT in patients with implanted VP shunt systems.METHODSVentriculoperitoneal shunt systems have been investigated with LDCT scanning at the authors' department since 2015. A consecutive series of 57 patients (70 investigations) treated between 2015 and 2016 was retrospectively assessed. A historical patient cohort that had been evaluated with radiography was compared with the LDCT patients in terms of radiation dose and image quality. Three independent observers evaluated projection of the valve pressure level and correct intraperitoneal position, as well as complete shunt projection, using a Likert-type scale of 1-5, where 1 indicated "not assessable" and 5 meant "assessable with high accuracy." Descriptive statistics and the Mann-Whitney U-test were used for analysis.RESULTSTwenty-seven radiographs (38.6%) and 43 LDCT scans (61.4%) were analyzed. The median dose-length product (DLP) of the LDCT scans was 100 mGy·cm (range 59.9-183 mGy·cm). The median total dose-area product (DAP) of the radiographic images was 3177 mGy·cm2 (range 641-13,833 mGy·cm2). The estimated effective dose (EED) was significantly lower with the LDCT scan (p < 0.001). The median EED was 4.93 and 1.90 mSv for radiographs and LDCT, respectively. Significantly better identification of the abdominal position of the distal shunt catheter was achieved with LDCT (p < 0.001). Simultaneously, significantly improved visualization of the entire shunt system was realized with this technique (p < 0.001). On the contrary, identification of the valve settings was significantly worse with LDCT (p < 0.001).CONCLUSIONSWhole-body LDCT scanning allows good visualization of the distal catheter after VP shunt placement. Despite the fact that only a rough estimation of effective doses is possible in a direct comparison of LDCT and radiography, the data showed that shunt assessment via LDCT does not lead to greater radiation exposure. Thus, especially in difficult anatomical conditions, as in patients who have undergone multiple intraabdominal surgeries, have a high BMI, or are immobile, the use of LDCT shunt evaluation has high clinical value. Further data are needed to determine the value of LDCT for the evaluation of complications or radiation dose in pediatric patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.