Abstract
BackgroundThis study aimed to determine the left ventricular (LV) systolic function in patients on maintenance hemodialysis (MHD) using the myocardial work (MW) technique and investigate the clinical value of the MW technique for the quantitative analysis of left ventricular (LV) systolic function in MHD patients with left ventricular hypertrophy (LVH).MethodsA total of 68 MHD patients and 35 controls were registered in this study. The MHD patients were divided into the non-left ventricular hypertrophy (NLVH) group (n = 35) and the LVH group (n = 33) according to the LV mass index (LVMI). MW was used to generate the LV global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), and global wasted work (GWW), global work efficiency (GWE). GLS and the MW parameters (GWI, GCW, GWW, GWE) were compared between groups and the correlations between these parameters and the LV ejection fraction (LVEF) in the LVH group were examined. The receiver operating characteristic (ROC) curve was used to evaluate the efficacy of MW parameters and GLS for the assessment of LV systolic dysfunction in MHD with LVH patients.ResultsThe LVH group had significantly lower GWE, GWI, GCW, and GLS but higher GWW than the control and NLVH groups. Compared with the control group, the NLVH group had significantly lower GWE and GLS and higher GWW, but no significant differences in GWI, GCW were observed between these two groups. The LVEF was negatively correlated with GWW in MHD patients, but positively correlated with GWI, GWE, and GCW in the LVH group. Receiver operating characteristic curve (ROC) analysis revealed that GWE, GWW, GWI, and GCW had appreciable area under the curve (AUC), sensitivity, and specificity for evaluating LV function in LVH patients on MHD.ConclusionsThe MW parameters can quantitatively represent the LV myocardial work in MHD patients. Thus, the technique provides a new method for the quantitative evaluation of LV systolic function in MHD with LVH patients.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.