Abstract

Ultrasound is the first-line tool for screening hepatic steatosis. Statistical distributions can be used to model the backscattered signals for liver characterization. The Nakagami distribution is the most frequently adopted model; however, the homodyned K (HK) distribution has received attention due to its link to physical meaning and improved parameter estimation through X- and U-statistics (termed “XU”). To assess hepatic steatosis, we proposed HK parametric imaging based on the α parameter (a measure of the number of scatterers per resolution cell) calculated using the XU estimator. Using a commercial system equipped with a 7-MHz linear array transducer, phantom experiments were performed to suggest an appropriate window size for α imaging using the sliding window technique, which was further applied to measuring the livers of rats (n = 66) with hepatic steatosis induced by feeding the rats a methionine- and choline-deficient diet. The relationships between the α parameter, the stage of hepatic steatosis, and histological features were verified by the correlation coefficient r, one-way analysis of variance, and regression analysis. The phantom results showed that the window side length corresponding to five times the pulse length supported a reliable α imaging. The α parameter showed a promising performance for grading hepatic steatosis (p < 0.05; r2 = 0.68). Compared with conventional Nakagami imaging, α parametric imaging provided significant information associated with fat droplet size (p < 0.05; r2 = 0.53), enabling further analysis and evaluation of severe hepatic steatosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.