Abstract

Volatilization losses reduce the efficiency of surface-applied urea for crop N uptake, and can be controlled using urease inhibitors to retard hydrolysis or by the presence of other amendments that enhance retention of NH4+ formed by urea hydrolysis. A greenhouse study was conducted to evaluate the effectiveness of oxidized charcoal (OCh; 150gkg−1 fertilizer) applied with or without Cu and/or Zn (∼0.5–2gkg−1 fertilizer), and of Cu and/or Zn applied without OCh, for increasing uptake of urea 15N by a common tropical pasture grass, capim-Mombaça (Panicum maximum Jacq. Cv. Mombaça), grown on a coarse-textured Oxisol. Cuttings were collected 5, 14, 28, 42, and 56days after surface placement of amended or unamended urea pellets to estimate dry matter production, total N uptake, and 15N recovery. Soil sampling was carried out in conjunction with the first and fourth cuts to evaluate exchangeable NH4+ and NO3− concentrations. At the concentrations studied, OCh was more effective than Cu and/or Zn for prolonging NH4+-N availability in urea-treated soil; however, OCh alone or in combination with Zn and Cu had no effect on biomass production or N recovery and can safely be eliminated as a useful option for pasture improvement. The most promising amendment was Zn, which significantly increased total N uptake and the efficiency of urea N fertilization. The use of Zn in conjunction with urea has practical potential to improve forage production on tropical soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.