Abstract

Abstract Let $d\in\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\mathrm{GL}_{d}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\frac{L^{\prime}}{L}(1+it,\pi\otimes\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\left|\frac{L^{\prime}}{L}(1,\pi\otimes\chi_D)\right|$ when π is self-dual.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.