Abstract

AbstractNevanlinna's second main theorem is a far-reaching generalization of Picard's theorem concerning the value distribution of an arbitrary meromorphic function f. The theorem takes the form of an inequality containing a ramification term in which the zeros and poles of the derivative f′ appear. We show that a similar result holds for special subfields of meromorphic functions where the derivative is replaced by a more general linear operator, such as higher-order differential operators and differential-difference operators. We subsequently derive generalizations of Picard's theorem and the defect relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.