Abstract
It is well-known that software defect prediction is one of the most important tasks for software quality improvement. The use of defect predictors allows test engineers to focus on defective modules. Thereby testing resources can be allocated effectively and the quality assurance costs can be reduced. For within-project defect prediction (WPDP), there should be sufficient data within a company to train any prediction model. Without such local data, cross-project defect prediction (CPDP) is feasible since it uses data collected from similar projects in other companies. Software defect datasets have the class imbalance problem increasing the difficulty for the learner to predict defects. In addition, the impact of imbalanced data on the real performance of models can be hidden by the performance measures chosen. We investigate if the class imbalance learning can be beneficial for CPDP. In our approach, the asymmetric misclassification cost and the similarity weights obtained from distributional characteristics are closely associated to guide the appropriate resampling mechanism. We performed the effect size A-statistics test to evaluate the magnitude of the improvement. For the statistical significant test, we used Wilcoxon rank-sum test. The experimental results show that our approach can provide higher prediction performance than both the existing CPDP technique and the existing class imbalance technique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.