Abstract

This paper generalizes a recently proposed spatial autoregressive model and introduces a spatiotemporal model for forecasting stock returns. We support the view that stock returns are affected not only by the absolute values of factors such as firm size, book-to-market ratio and momentum but also by the relative values of factors like trading volume ranking and market capitalization ranking in each period. This article studies a new method for constructing stocks’ reference groups; the method is called quartile method. Applying the method empirically to the Shanghai Stock Exchange 50 Index, we compare the daily volatility forecasting performance and the out-of-sample forecasting performance of Value-at-Risk (VaR) estimated by different models. The empirical results show that the spatiotemporal model performs surprisingly well in terms of capturing spatial dependences among individual stocks, and it produces more accurate VaR forecasts than the other three models introduced in the previous literature. Moreover, the findings indicate that both allowing for serial correlation in the disturbances and using time-varying spatial weight matrices can greatly improve the predictive accuracy of a spatial autoregressive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.