Abstract
ABSTRACTForecasts of values at risk (VaRs) are made for volatility indices such as the VIX for the US S&P 500 index, the VKOSPI for the KOSPI (Korea Stock Price Index) and the OVX (oil volatility index) for crude oil funds, which is the first in the literature. In the forecasts, dominant features of the volatility indices are addressed: long memory, conditional heteroscedasticity, asymmetry and fat-tails. An out-of-sample comparison of the VaR forecasts is made in terms of violation probabilities, showing better performance of the proposed method than several competing methods which consider the features differently from ours. The proposed method is composed of heterogeneous autoregressive model for the mean, GARCH model for the volatility and skew-t distribution for the error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.