Abstract

Abstract This paper offers a new approach to modeling the distribution of a portfolio composed of either asset returns or insurance losses. To capture the leptokurtosis, which is inherent in most financial series, data are modeled by using Gram-Charlier (GC) expansions. Since we are interested in operating with several series simultaneously, the distribution of the sum of GC random variables is derived. This latter turns out to be a tail-sensitive density, suitable for modeling the distribution of a portfolio return-losses and, accordingly, can be conveniently adopted for computing risk measures such as the value at risk and the expected shortfall as well as some performance measures based on its partial moments. The closed form expressions of these risk measures are derived for cases when the density of a portfolio is the sum of GC expansions, either with the same or different kurtosis. An empirical application of this approach to a portfolio of financial asset indexes provides evidence of the comparative effectiveness of this technique in computing risk measures, both in and out of the sample period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.