Abstract

The objective of this study is to determine the economic and operational impact on energy cost of incorporating large photovoltaic (PV) and wind energy conversion systems (WECS) into the electric utility generation mix. In most cases, PV and WECS power outputs are subtracted from the utility load with the expectation that conventional generation would meet the residual load. This approach is valid for small penetration levels and/or for PV and WECS facilities connected near load centers, However, several constraints such as thermal generation characteristics, fuel supply and delivery, spinning reserve requirements, and hydro availability are not adequately represented in this process. To determine the optimal value of large-scale PV and WECS applications, a new methodology that would take into account the aforementioned constraints as well as a more global penetration is developed. Results indicate that while high hydro availability increases PV penetration levels, high ramping rates can also significantly increase penetration levels. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.