Abstract
To accelerate the high value-added usage of agricultural residue, cellulose and cellulose nanofibers (CNFs) were extracted from wheat straw and then formed into all-cellulose nanocomposite films. The acid–alkali method (AM) and the extraction method (EM) were respectively adopted to prepare wheat straw cellulose (WSC), and the TEMPO oxidation method was used to extract CNFs. The nanocomposite films were fabricated by dissolving WSC and adding different CNF contents of 0.0, 0.5, 1.5, and 3.0%. There was a better miscibility for the all-cellulose nanocomposite film prepared by EM (Composite-E) compared to that for the all-cellulose nanocomposite film prepared by AM (Composite-A). Composite-E also showed a better optical transparency than Composite-A. The thermal stability of the two RWSCs presented contrary results when the CNFs were added, indicating a higher thermal stability for Composite-E than for Composite-A. This should have determined the properties of the films in which Cellulose I and Cellulose II coexisted for the all-cellulose nanocomposite films, and the forming mechanism of Cellulose II and crystallinity were determined by the cellulose-extracting method. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy also showed that there was more Cellulose I in Composite-E than in Composite-A. The results are expected to enrich the data for deep processing of agricultural residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.