Abstract
This study focused on the contents of the air particulate matter pollution in two districts of Ulaanbaatar and determined the chemical composition of air borne samples and the source of those particles. Samples of fine and coarse fractions of PM were collected using a “Gent” stacked filter unit in two fractions of 0 - 2.2 μm and 2.2 - 10 μm sizes in two semi-residential areas from September 2012 to August 2013. This paper points out that fine and coarse concentration varied seasonally with meteorological changes. In sampling site 3, Zuun Ail (Figure 1) combustion generators generate the majority of pollution around 50.6% of household waste furnace to create high-temperature combustion of 21.6%. However, this net contributes to soil contamination near the lower value (5%) that arises around the vacuum environment in substantial amounts (14%), where is open around the buildings and residential areas, and the soil is considered to be due to the construction. But the data point to the highway in the distance, where is 9% of contamination of all vehicles’ smoke, and exhaust is similar to the data collected in Ulaanbaatar. According to analysis of samples of Nuclear Research Center (NRC) sampling site 2, it shows burning source of Particulate Matter 2.5 pollution in the air is around 25.5% of household waste furnace to create high-temperature product of combustion. But here the very high net contribution to the pollution of soil, is 31.6%. Today’s emerging dust is around 15.2%, showing that motor vehicle pollution causes 19.7%. Since the analysis was done on a sample-by-sample basis, it is possible to estimate the daily contributions of pollution sources and provide useful information based on a limited number of samples in order to address air quality management issues in Ulaanbaatar.
Highlights
Life is interconnected to environmental change and air quality
The purpose of this study is to investigate particulate matter air pollution in UB, and to compare it with research conducted in 2008, and determine the level of chemical elemental composition and black carbon (BC) concentration data
PM10 - 2.5 and PM2.5 fraction measurement samples determined the amount of Particulate matter (PM) air pollution in UB
Summary
Life is interconnected to environmental change and air quality. Pollution is one of the world’s most important issues. Air quality concerns have become one of the most important problems to be solved for the capital city of Mongolia, Ulaanbaatar (UB). Located at approximately 1300 meters above sea level, the coldest national capital in the world, UB has an average annual temperature of −1.3 ̊C (29.7 ̊F), and population of 1.8 million [1]. Particulate matter (PM) air pollution in Ulaanbaatar is several times higher than the permissible level of the Mongolian National Air Quality Standards 4585:2007 (MNS) and the World Health Organization (WHO) standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.