Abstract

In this paper, we extend the framework of Klein [15] [Journal of Banking & Finance 20: 1211–1229] to a general model under the double exponential jump model with stochastic volatility on the underlying asset and the assets of the counterparty. Firstly, we derive the closed-form characteristic functions for this dynamic. Using the Fourier-cosine expansion technique, we get numerical solutions for vulnerable European put options based on the characteristic functions. The inverse fast Fourier transform method provides a fast numerical algorithm for the twice-exercisable vulnerable Bermuda put options. By virtue of the modified Geske and Johnson method, we obtain an approximate pricing formula of vulnerable American put options. Numerical simulations are made for investigating the impact of stochastic volatility on vulnerable options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.