Abstract

Furan fatty acids (FuFAs) are valuable minor compounds in our food with excellent antioxidant properties. Naturally occurring FuFAs are characterised by a central furan moiety with one or two methyl groups in β-/β’-position of the heterocycle (monomethyl- or M-FuFAs and dimethyl- or D-FuFAs). Comparably high concentrations of D-/M-FuFAs were reported in soybeans, but soy is often consumed as a processed product, such as full-fat soy flour and flakes, soy drink, tofu and texturised soy protein (TSP). Due to the chemical lability of D-/M-FuFAs, e.g. in the presence of light or oxygen, a degradation during the processing is possible. For this purpose, freshly harvested soybeans (n = 4) and differently processed soybean products (n = 22) were analysed on FuFAs. Three FuFAs, i.e. 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5), 9-(3,4-dimethyl-5-pentylfuran-2-yl)-nonanoic acid (9D5), and 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid (9M5), were identified and quantified in all fresh soybeans and most of the processed soy products (n = 20). A trend towards lower D-/M-FuFA contents in higher processed products was observable. Lower FuFA concentrations were usually accompanied with a decrease of the share of the less stable D-FuFAs (9D5, 11D5) in favour of the M-FuFA 9M5. Furthermore, one or two 3,4-nonmethylated furan fatty acids (N-FuFAs), i.e. 8-(5-hexylfuran-2-yl)-octanoic acid (8F6) and partly 7-(5-heptylfuran-2-yl)-heptanoic acid (7F7), were detected in all processed products, but not in the freshly harvested soybeans. Our results indicate that D-/M-/N-FuFAs may serve as suitable markers for both, careful manufacturing processes and adequate storage conditions of soy products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call