Abstract
This study investigated the interaction among valsartan (VAL), TGF-β pathways, and long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) in doxorubicin (DOX)-induced heart failure (HF), and explored their roles in DOX-induced HF progression. HF mice models in vivo were constructed by DOX induction. The expression of CHRF and TGF-β1 in hearts was detected, along with cardiac function, caspase-3 activity, and cell apoptosis. Primary myocardial cells were pretreated with VAL, followed by DOX induction in vitro for functional studies, including the detection of cell apoptosis with terminal deoxynucleotidyl transferase dUTP nick-end labeling and the expression of proteins associated with TGF-β1 pathways. HF models were established in vivo and in vitro. Expression of CHRF and TGF-β1 was up-regulated, and cell apoptosis and caspase-3 activity were increased in the hearts and cells of the HF models. VAL supplementation alleviated the cardiac dysfunction and injury in the HF process. Moreover, overexpressed CHRF up-regulated TGF-β1, promoted myocardial cell apoptosis, and reversed VAL's cardiac protective effect, while interference of CHRF (si-CHRF) did the opposite. Down-regulation of CHRF reversed the increased expression of TGF-β1 and the downstream proteins induced by pcDNA-TGF-β1 in HL-1 cells, while overexpression of CHRF reversed the VAL's cardiac protective effect in vivo. In conclusion, VAL regulates TGF-β pathways through lncRNA CHRF to improve DOX-induced HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.