Abstract
Abnormal red blood cell (RBC) adhesion to endothelial αvβ3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a β-adrenergic receptor (β-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvβ3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the β-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between β-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of β-ARs, similar to the inhibition observed in the presence of a β-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.
Highlights
In sickle cell disease (SCD), an inherited β-globin gene point mutation encodes abnormal hemoglobin (HbS), which under deoxygenated conditions polymerizes to form long stiff filaments deforming red blood cells (RBCs) from a biconcave to a sickle shape [1,2,3]
Treatment with epinephrine caused a significant increase in the CF of active intercellular adhesion molecule-4 (ICAM-4) receptors on the surface membrane of WT-RBCs from 8.98 ± 1.20% at baseline to 17.00 ± 1.89% (p = 0.0003; Fig 3A)
We explored the effect of valsartan on the activation of ICAM-4 receptors on WT, Sickle cell trait (SCT)- and SS-RBCs
Summary
In sickle cell disease (SCD), an inherited β-globin gene point mutation encodes abnormal hemoglobin (HbS), which under deoxygenated conditions polymerizes to form long stiff filaments deforming red blood cells (RBCs) from a biconcave to a sickle shape [1,2,3]. Sickle cell trait (SCT) is a heterozygous state characterized by the presence of both normal hemoglobin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.