Abstract

Chitosan nanoparticles and valproic acid are demonstrated as the protective agents in the treatment of spinal cord injury (SCI). However, the effects of valproic acid-labeled chitosan nanoparticles (VA-CN) on endogenous spinal cord neural stem cells (NSCs) following SCI and the underlying mechanisms involved remain to be elucidated. In this study, the VA-CN was constructed and the effects of VA-CN on NSCs were assessed in a rat model of SCI. We found VA-CN treatment promoted recovery of the tissue and locomotive function following SCI. Moreover, administration of VA-CN significantly enhanced neural stem cell proliferation and the expression levels of neurotrophic factors following SCI. Furthermore, administration of VA-CN led to a decrease in the number of microglia following SCI. In addition, VA-CN treatment significantly increased the Tuj 1- positive cells in the spinal cord of the SCI rats, suggesting that VA-CN could enhance the differentiation of NSCs following SCI. In conclusion, these results demonstrated that VA-CN could improve the functional and histological recovery through promoting the proliferation and differentiation of NSCs following SCI, which would provide a newly potential therapeutic manner for the treatment of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.