Abstract

Histone deacetylases (HDAC) inhibitors including valproic acid (VPA) have emerged as a promising therapeutic intervention in neurological disorders. We investigated the levels of acetylated histone and the therapeutic potential of VPA in a rat model of spinal cord injury (SCI). At different time points (12 h, 1 day, 3 days, 1 week and 2 weeks) after SCI or sham surgery, the spinal cords were collected to evaluate the levels of acetylated histone H3 (Ac-H3) and H4 (Ac-H4). VPA or vehicle was injected for 1 week starting immediately after SCI and histone acetylation, apoptosis, as well as neurobehavior were observed to test the effect of VPA. The levels of Ac-H3 and Ac-H4 in the injured spinal cord started to significantly decrease as early as day 1, and remained below those in uninjured controls for at least 2 weeks after SCI. Injection of VPA markedly prevented the reductions of Ac-H3 and Ac-H4, upregulated the expressions of Hsp70 and Bcl-2, reduced apoptosis and finally promoted locomotion recovery. Our data demonstrated that SCI led to marked reduction in histone acetylation; VPA was neuroprotective in the SCI model, and the mechanism may involve HDAC inhibition and protective proteins induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.