Abstract

Background/Aims: Valproic acid (VPA) is the drug of choice for treating epilepsy, but has the unwanted effects of inducing weight gain and increasing the risk of developing insulin resistance. The mechanism through which these side effects occur is unknown. VPA inhibits histone deacetylase (HDAC), but also decreases the transcriptional activity of CCAAT enhancer binding protein α (CEBPα). Given the possible association between VPA, CEBPα and adipokine gene regulation, we hypothesized that they would alter the expression of resistin (rstn), fasting-induced adipose factor (fiaf) and suppressor of cytokine signaling-3 (socs-3), genes implicated in the development of leptin and insulin resistance. Methods: We investigated the effects of VPA (1 mM; 24 or 48 h) on gene expression using real-time RT-PCR in 3 distinct models: N-1 hypothalamic neurons, 3T3-L1 adipocytes and male CD-1 mice. Subsequently, cells were treated with 5 nM of the more specific HDAC inhibitor trichostatin A (TSA). CEBPα expression was also modified in N-1 neurons using either RNA interference (RNAi) or an overexpression vector to evaluate its effects on target gene expression. Results: In N-1 neurons, VPA induced significant increases in CEBPα and socs-3, but inhibited rstn and fiaf gene expression. In contrast, TSA induced rstn and socs-3, but inhibited fiaf. VPA also induced the expression of CEBPαin 3T3-L1 adipocytes, but had no effect on other target genes, and TSA suppressed fiaf and socs-3.Subsequently, CEBPα was overexpressed (24 h) or silenced using RNAi (24 and 48 h) in N-1 neurons. The silencing of CEBPα led to significant decreases in rstn mRNA, but increased fiaf and socs-3 expression, whereas its overexpression had the opposite effect. When male CD-1 mice were treated with either a single (100 mg/kg; 24 h), or multiple (200 mg/kg; 72 h) daily injections of VPA, no changes in body weight or gene expression were detected in either hypothalamic or adipose tissues. Conclusions: In summary, these experiments reveal a potentially important role for CEBPα in the regulation of hypothalamic gene expression in N-1 neurons and suggest that it might modulate central energy metabolism. Although VPA also modified hypothalamic gene expression in vitro, it remains to be determined whether it has similar effects in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.