Abstract

Background: The ability of chronic valproate (VPA) to reduce arachidonic acid (AA) turnover in brain phospholipids of unanesthetized rats has been ascribed to its inhibition of acyl-CoA synthetase (Acsl)-mediated activation of AA to AA-CoA. Our aim was to identify a rat Acsl isoenzyme that could be inhibited by VPA in vitro. Methods: Rat Acsl3-, Acsl6v1- and Acsl6v2-, and Acsl4-flag proteins were expressed in E. coli, and the ability of VPA to inhibit their activation of long-chain fatty acids to acyl-CoA was estimated using Michaelis–Menten kinetics. Results: VPA uncompetitively inhibited Acsl4-mediated conversion of AA and of docosahexaenoic (DHA) but not of palmitic acid to acyl-CoA, but did not affect AA conversion by Acsl3, Acsl6v1 or Acsl6v2. Acsl4-mediated conversion of AA to AA-CoA showed substrate inhibition and had a 10-times higher catalytic efficiency than did conversion of DHA to DHA-CoA. Butyrate, octanoate, or lithium did not inhibit AA activation by Acsl4. Conclusions: VPA's ability to inhibit Acsl4 activation of AA and of DHA to their respective acyl-CoAs, when related to the higher catalytic efficiency of AA than DHA conversion, may account for VPA's selective reduction of AA turnover in rat brain phospholipids, and contribute to VPA's efficacy against bipolar disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.