Abstract

Migraine is a common disease with a high morbidity. Valproate (VP) is used as an anti-epilepsy drug in clinic. This study aimed to investigate the role of VP in nitroglycerin (NTG)-induced migraine using a mouse model. NTG was employed by intraperitoneal injection to induce a migraine model in mice. The NTG administration caused mouse head discomforts, decreased tolerance to cold or hot stimulation and increased content of nitric oxide, calcitonin gene-related peptide and neuropeptide Y in serum, which were ameliorated by intraperitoneal injection of VP. The levels of two inflammatory factors, interleukin (IL)-1β and inducible nitric oxide synthase, in dura mater were increased by NTG treatment, while the increase was attenuated by application of VP. In addition, the phosphorylation levels of protein kinase C (PKC) α, γ, δ and ε were increased by NTG and decreased by VP. However, their total expression at the transcriptional and translational levels did not change significantly. Two substrates of PKC, cAMP-response element binding protein 1 and signal transducer and activator of transcription 1 were also phosphorylated by NTG application, and the phosphorylation level was attenuated by VP, consistent with the change of PKC informs. Together, we demonstrated that VP prevented damage due to migraine by inhibiting PKC signalling in NTG-injected mice, which may provide a basis for investigating the clinical treatment of migraine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.