Abstract

The dopamine transporter (DAT) is the key regulator of dopaminergic transmission and is a target of several xenobiotics, including pesticides and pharmacological agents. Previously, we identified a prominent role for histone deacetylases in the regulation of DAT expression. Here, we utilized a rat dopaminergic cell line (N27) to probe the responsiveness of DAT mRNA expression to inhibitors of histone acetylation. Inhibition of histone deacetylases (HDACs) by valproate, butyrate and Trichostatin A led to a 3–10-fold increase in DAT mRNA expression, a 50% increase in protein levels, which were accompanied by increased H3 acetylation levels. To confirm the mechanism of valproate-mediated increase in DAT mRNA, chromatin immunoprecipitation (ChIP) assays were used and demonstrated a significant increase in enrichment of acetylation of histone 3 on lysines 9 and 14 (H3K9/K14ac) in the DAT promoter. Expression of Nurr1 and Pitx3, key regulators of DAT expression, were increased following valproate treatment and Nurr1 binding was enriched in the DAT promoter. Together, these results indicate that histone acetylation and subsequent enhancement of transcription factor binding are plausible mechanisms for DAT regulation by valproate and, perhaps, by other xenobiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.