Abstract

BackgroundTraumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.Methodology/Principal FindingsUsing a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.Conclusion/SignificanceOur findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.

Highlights

  • The cognitive and behavioral dysfunctions associated with traumatic brain injury (TBI) are thought to be due to both the initial injury, and a series of progressive damages and secondary pathologies [1]

  • It is thought that the antiepileptic activity of Valproate [2-propylpentanoic acid] (VPA) results from a combination of its influence on a number of targets in the central nervous system including inhibition of GABA transamination, reduction of NMDA-mediated neuronal excitation, inhibition of histone deacetylases (HDACs) and glycogen synthase kinase (GSK)-3, and blockade of voltage-gated sodium and T-type calcium channels [10]

  • As altered GABAergic and glutamatergic neurotransmission, decreased histone acetylation, and calcium entry have all been implicated in Traumatic brain injury (TBI) pathology, we questioned if VPA can be used as a treatment option following TBI

Read more

Summary

Introduction

The cognitive and behavioral dysfunctions associated with traumatic brain injury (TBI) are thought to be due to both the initial injury, and a series of progressive damages and secondary pathologies [1] These include altered homeostasis due to disruption of the blood-brain barrier (BBB), excessive release of excitatory neurotransmitters, axonal and dendritic disruptions, neuroinflammation, post-traumatic seizures (PTS), and cell death [2,3,4,5]. It is thought that the antiepileptic activity of VPA results from a combination of its influence on a number of targets in the central nervous system including inhibition of GABA transamination, reduction of NMDA-mediated neuronal excitation, inhibition of histone deacetylases (HDACs) and glycogen synthase kinase (GSK)-3, and blockade of voltage-gated sodium and T-type calcium channels [10]. A widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and may attenuate a number of TBI-associated pathologies

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call