Abstract
This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes (methylene blue, methyl orange, and orange G) via a hetero-catalytic Fenton process. The iron nanoparticles were thoroughly characterized by gas adsorption of N2 at 77 K, scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD), and thermal analysis, including thermogravimetric analysis (TG) and temperature-programmed reduction (TPR). A statistical design of experiments and response surface methodology were employed to analyze the influence of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. The results demonstrated that optimizing the operational conditions could achieve 100% dye removal efficiency. This study highlights the potential of nZVI synthesized through eco-friendly methods as a promising solution for water decontamination involving diverse model dyes, thus contributing to sustainable waste management and environmental protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.