Abstract

Hydrothermal liquefaction is a promising technology to upgrade wet organic waste into a biocrude oil for diesel or jet fuel; however, this process generates an acid-rich aqueous phase which poses disposal issues. This hydrothermal liquefaction aqueous phase (HTL-AP) contains organic acids, phenol, and other toxins. This work demonstrates that Y. lipolytica as a unique host to valorize HTL-AP into a variety of co-products. Specifically, strains of Y. lipolytica can tolerate HTL-AP at 10% in defined media and 25% in rich media. The addition of HTL-AP enhances production of the polymer precursor itaconic acid by 3-fold and the polyketide triacetic acid lactone at least 2-fold. Additional co-products (lipids and citric acid) were produced in these fermentations. Finally, bioreactor cultivation enabled 21.6 g/L triacetic acid lactone from 20% HTL-AP in mixed sugar hydrolysate. These results demonstrate the first use of Y. lipolytica in HTL-AP valorization toward production of a portfolio of value-added compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.