Abstract

Valorization of waste polyethylene terephthalate (PET) plastic into microporous carbon with N-doping treatment was successfully performed in a one-pot synthesis and the N-doped microporous carbon was used for CO2 capture, which can mitigate plastic pollution and climate change simultaneously. The PET-derived microporous carbon developed by KOH activation and urea treatment in a one-pot synthesis at 700 °C exhibited the highest CO2 adsorption uptake of 6.23 mmol g−1 at 0 °C and 4.58 mmol g−1 at 25 °C (1 atm). The Langmuir and pseudo second-order models displayed well-fitting relationships with equilibrium and kinetic experimental data obtained in this study. The N-doped microporous carbon showed high CO2 selectivity over N2, implying that it is feasible for treating flue gases (10% CO2 and 90% N2) at 50 °C. In addition, the CO2 uptake was not only affected by micropores but also related with nitrogen and oxygen functional groups. Compared to the porous carbon prepared by two-pot synthesis where KOH activation and urea treatment were conducted separately, the porous carbon prepared by one-pot synthesis had higher oxygen contents and higher CO2 adsorption uptake. All of findings implied that the N-doped microporous carbon was successfully developed from waste PET plastic for capturing CO2 and can play a promising role in both sustainable waste management and environmental protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.