Abstract

Waste eggshell-derived bioflocculant was used for harvesting T. obliquus in a circular bioeconomy approach. It was found that 120 mg L−1 bioflocculant can flocculate 98.62 ± 0.43% of T. obliquus cells within 25 min at optimal pH 4.0 and temperature 35 °C. The influence of bioflocculant concentration, pH and temperature on zeta potential was evaluated to understand the flocculation mechanism. Microscopic and FESEM-EDX images were analyzed to evaluate the microalgal structural changes. Adsorption mechanism of bioflocculant over the microalgal cells was determined by performing adsorption kinetic studies. Pseudo-second order kinetic model was a suitable fit for the data obtained from the experiments, which indicated chemisorption as the probable mechanism. The spent medium recovered after harvesting process was successfully recycled for subsequent cultivation of T. obliquus, thus reducing the dependency on fresh medium. The FAME composition of the biomass treated with bioflocculant was not altered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call