Abstract

A method consisting of the alkaline hydrolysis of tomato pomace by-products has been optimized to obtain a mixture of unsaturated and polyhydroxylated fatty acids as well as a non-hydrolysable secondary residue. Reaction rates and the activation energy of the hydrolysis were calculated to reduce costs associated with chemicals and energy consumption. Lipid and non-hydrolysable fractions were chemically (infrared (IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS)) and thermally (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) characterized. In addition, the fatty acid mixture was used to produce cutin-based polyesters. Freestanding films were prepared by non-catalyzed melt-polycondensation and characterized by Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectroscopy, solid-state nuclear magnetic resonance (NMR), DSC, TGA, Water Contact Angles (WCA), and tensile tests. These bio-based polymers were hydrophobic, insoluble, infusible, and thermally stable, their physical properties being tunable by controlling the presence of unsaturated fatty acids and oxygen in the reaction. The participation of an oxidative crosslinking side reaction is proposed to be responsible for such modifications.

Highlights

  • Driven by the worldwide demand for primary foodstuff supply, crop production has been pushed to very high rates, while the consumption of processed food products increases every year

  • The fraction content of dry tomato pomace was calculated by separating its components

  • According to such literature results and others [25,26,27], the composition of each fraction is listed in Table 1 and from them, the content in the dry tomato pomace has been calculated

Read more

Summary

Introduction

Driven by the worldwide demand for primary foodstuff supply, crop production has been pushed to very high rates, while the consumption of processed food products increases every year. The residues generated by such activities reach ~1.3 billion tons at the global level (~1/3 of the food produced worldwide), of which ~88 Mt are estimated to be produced in Europe [1,2]. These residues have been traditionally wasted in landfills and bodies of water, causing important environmental and health issues. Materials 2018, 11, 2211 emissions of greenhouse gases during production of food that finishes wasted, increase considerably the environmental impacts of such residues [3] This underutilized, inexpensive biomass is regarded as an accessible and worthwhile feedstock for the fabrication of valuable products such as edibles for humans and livestock, bio-fertilizers, biofuels, and manufactured commodities [4].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call