Abstract

In the context of food waste valorization, the purpose of this study is to demonstrate the complete valorization of soybean residue (okara) through supercritical carbon dioxide extraction (SCE). Okara oil (OKO) was separated from full-fat powder (FFP) using SCE with and without ethanol (EtOH) as a cosolvent. The kinetics of extraction, chemical composition, and physicochemical, functional, and health-promoting properties of OKO and defatted powder (DFP) were determined. The process yielded 18.5% oil after 450 min. The soluble dietary fiber and protein of the DFP increased significantly; its water and oil absorption capacities increased despite the decrease in swelling capacity corresponding to particle size reduction. The OKO was rich in linoleic and oleic acids, with a ratio of ω6-to-ω3 fatty acids = 9.53, and EtOH increased its phenolic content (0.45 mg GAE/g), aglycone content (239.6 μg/g), and antioxidant capacity (0.195 mg TE/g). The DFP paste showed gel-like consistency and shear-thinning flow behavior, whereas the OKO showed characteristic transition of the product and affected lubrication at contact zones. Both fractions showed potential as food ingredients based on their nutritional and functional properties, as well as the capability of modifying the microstructure of a model food system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call