Abstract

Agricultural waste valorization is currently getting attention across the world owing to its environmental impact and rich phytochemistry. The mandate of the current investigation was the extraction and characterization of bioactive moieties from the mustard oilseed cake/meal MOC and sesame oilseed cake/meal SOC through ultrasound extraction (UE) techniques due to its higher yield and less burden on the environment as compared to conventional extraction (CE). Purposely, the MOC and SOC were initially subjected to compositional analysis. Thereafter, bioactive moieties were extracted by using different solvents, that is, ethanol and distilled water, and by applying conventional and ultrasonic extraction techniques. The outcomes indicated that among the techniques, ultrasound exhibited the highest results, and in solvents, ethanol performed better. The treatment extracted with ethanol with UE at 10min showed the best result for total phenolic contents (TPC) as (6.07 ± 0.03 09 g GAE/100 g MOC) and (7.09 ± 0.04 g GAE/100 g SOC), DPPH radical scavenging activity (67.3 ± 1.9 TE/100 g MOC) & (72.68 ± 1.9 TE/100 g SOC), and FRAP was recorded as (2.83 ± 0.02 g TE/100 g MOC) & (3.56 ± 0.03 g TE/100 g SOC). The higher antioxidant potential showed that the mustard and sesame waste holds significant therapeutic potential owing to its rich antioxidant profile and thus should be utilized for the development of functional products against lifestyle-related disorders. In conclusion, ultrasound is a better technique for maximum as well as accurate extraction, with ethanol exhibiting as a better solvent for this process with more yields as compared to distilled water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.