Abstract

Mango by-products are disregarded as waste contributing to greenhouse gas emissions. This study used mango seed and kernel to enhance the nutritional content of maize complementary porridges. Composite maize-based porridges (MBP) were formulated by fortifying maize flour with fine ground mango seed and kernel at different levels (31%, 56%, 81%). The by-products and formulated porridges were characterized for their nutritional composition, mineral content, total phenolic content, and antioxidant capacity. Furthermore, the bioaccessibility of essential minerals during in vitro gastrointestinal digestion of the formulated porridges was determined using inductively coupled plasma optical emission spectrometry. Mango seed had a high fat (12.0 g/100 g dw) and protein content (4.94 g/100 g dw), which subsequently doubled the fat content of the porridges. Mango by-products increased the total phenolic content of maize porridge by more than 40 times and the antioxidant capacity by 500 times. However, fortification with mango by-products significantly decreased the bioaccessibility of minerals, especially manganese, copper, and iron, as the highest percentages of insoluble minerals were recorded in MBP 81 at 78.4%, 71.0%, and 62.1%, respectively. Thus, the results suggest that mango seed and kernel could increase the nutritional value of maize porridge, but fortification should be done at lower levels of about 31–56%.

Highlights

  • Fruit processing from industry and agriculture generates high amounts of by-products that are often disregarded as waste

  • This could be attributed to differences fruit variety, geographical conditions, and climatic growing conditions

  • (34.6 g/100 g dw) and soluble dietary fiber (5.07 g/100 g dw), while maize flour had the lowest total dietary fiber (4.82 g/100 g dw), this was higher than prior reported results (2.68 g/100 g) [26]

Read more

Summary

Introduction

Fruit processing from industry and agriculture generates high amounts of by-products that are often disregarded as waste. Mango (Mangifera indica L.) is among the top 10 fruits of major economic importance cultivated in Africa. Mango processing generates approximately 3 million tonnes of the by-products (seeds, peels, kernels) making up 25–40% of fresh fruit. These are rich sources of nutrients and bioactive compounds, i.e., mango seed and kernel are excellent sources of dietary fiber, carotenoids, protein, fat, minerals, and phenolic compounds [4,5,6]. The bioactive compounds in mango by-products have antioxidant, antibacterial, cardioprotective, anti-inflammatory, and anti-

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call