Abstract

In the framework of circular bio-economy, waste loquat seeds were utilized for the production of two added-value products. The seeds were hydrothermally carbonized at a temperature range of 150–250 °C and time range 2–6 h and the resultant hydrochars and aqueous phases were characterized using various methods. The optimum higher heating value of 30.64 MJ kg−1, ash content of 1.99 wt % and alkali index of 0.05 were achieved for the hydrochar prepared at 250 °C and 6 h, establishing its suitability for energy-related applications. The aqueous phase obtained at 250 °C and 6 h achieved 90% scavenging of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and had a IC50 value of 43.71 μg mL−1. Principal component analysis showed that the production of phenols, ketones, alkenes and organic acids was favored at >200 °C, whereas furans and aldehydes were primarily formed at 150 °C. Conclusively, both added-value products were obtained at the same optimum hydrothermal carbonization conditions of 250 °C and 6 h treatment time. In a bio-refinery context, this has the practical implication that both bio-products be obtained simultaneously, without the need to switch between different temperatures and residence times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.