Abstract

Developing eco-friendly antioxidant and antimicrobial substances originating from biomass residues has recently attracted considerable interest. In this study, two lignosulfonates and various oxidized water-soluble lignins were investigated for their antioxidant properties, as assessed by ABTS, DPPH and Folin-Ciocalteu methods, and their antimicrobial activity against some bacterial strains responsible for human pathologies. The lignosulfonates showed the largest antiradical/antimicrobial capacity, whereas the other substrates were less effective. The observed antioxidant/antibacterial properties were positively correlated with lignin aromatic/phenolic content. The positive correlation between antiradical and antimicrobial activities suggests that lignin scavenging capacity was also involved in its antibacterial activity. A greater antimicrobial performance was generally observed against Gram-positive bacterial strains, and it was attributed to the intrinsic larger susceptibility of Gram-positive bacteria to lignin phenols. A significant though lesser inhibitory activity was also found against Escherichia coli. Our results confirmed the dependence of lignin antioxidant/antibacterial power on its extraction method and chemical structure, as well as on the type of bacterial strains. Identifying the relationship between lignin molecular composition and its antioxidant/antibacterial features represents an advance on the potential future use of renewable and eco-compatible lignin materials in nutraceutical, pharmaceutical and cosmetic sectors. © 2021 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call