Abstract
Cellulose-containing residue from agar production was incorporated as a filler into soy protein-based hydrogels and revalorized without further purification. Rheological assessment of these hydrogels was carried out in order to confirm their shear-thinning behavior and their suitability for 3D printing. It was observed that all hydrogels behaved as weak gels, which are suitable for 3D printing and have good printability and shape fidelity. The addition of cellulose did not cause chemical crosslinking but physical interactions, which led to morphological changes, thereby promoting hardness and shape recovery of the 3D-printed products. The hydrogel with the highest residue content (8 wt %) showed the highest value (78%) in shape recovery. Furthermore, the physicochemical characterization of these 3D-printed products revealed that although they have high swelling capacity, they preserve their integrity in wet conditions. These results suggested the potential of the 3D-printed products developed using residues without further purification to promote circular economy, increasing the efficiency in resources utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.