Abstract

Previous works on deformed graphene predict the existence of valley-polarized states, however, optimal conditions for their detection remain challenging. We show that in the quantum Hall regime, edge-like states in strained regions can be isolated in energy within Landau gaps. We identify precise conditions for new conducting edges-like states to be valley polarized, with the flexibility of positioning them at chosen locations in the system. A map of local density of states as a function of energy and position reveals a unique braid pattern that serves as a fingerprint to identify valley polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.