Abstract

The current valleytronics research is based on the paradigm of time-reversal-connected valleys in two-dimensional (2D) hexagonal materials, which forbids the fully electric generation of valley polarization by a gate field. Here, we go beyond the existing paradigm to explore 2D systems with a novel valley-layer coupling (VLC) mechanism, where the electronic states in the emergent valleys have a valley-contrasted layer polarization. The VLC enables a direct coupling between a valley and a gate electric field. We analyze the symmetry requirements for a system to host VLC, demonstrate our idea via first-principles calculations and model analysis of a concrete 2D material example, and show that an electric, continuous, wide-range, and switchable control of valley polarization can be achieved by VLC. Furthermore, we find that systems with VLC can exhibit other interesting physics, such as valley-contrasting linear dichroism and optical selection of the valley and the electric polarization of interlayer excitons. Our finding opens a new direction for valleytronics and 2D materials research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.