Abstract

We discuss valley current, which is carried by quasiparticles in graphene. We show that the valley current arises owing to a peculiar term in the electron-phonon collision integral that mixes the scalar and vector gauge-field-like vertices in the electron-phonon interaction. This mixing makes collisions of phonons with electrons sensitive to their chirality, which is opposite in two valleys. As a result of collisions with phonons, electrons of the different valleys deviate in opposite directions. Breaking the spatial inversion symmetry is not needed for a valley-dependent deviation of the quasiparticle current. The effect exists both in pristine graphene or bilayer graphene samples, and it increases with temperature owing to a higher rate of collisions with phonons at higher temperatures. The valley current carried by quasiparticles could be detected by measuring the electric current using a nonlocal transformer of a suitable design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.