Abstract

The short-term effects of feeding rats high levels of L-leucine or L-isoleucine on valine metabolism in vivo have been investigated. Consumption of a low-protein diet containing an additional 5% of leucine resulted in depression within one hour of the plasma concentrations of isoleucine, valine, α-keto-β-methylvalerate, and α-ketoisovalerate. Concurrently with these changes in blood branched-chain amino acids and branched-chain ketoacids was a rapid increase (51%) in whole-body L-[1- 14C]-valine oxidation. Studies with intragastrically administered leucine solutions indicated that the depressions in blood concentrations of valine occurred over the same time period as the stimulation in valine oxidation. In contrast, consumption of a low-protein diet containing an additional 5% of isoleucine had no significant effect on the plasma concentrations of leucine, valine, and α-ketoisocaproate; a significant ( P < 0.01) depression in the plasma concentration of α-ketoisovalerate was observed three hours after the diet containing excess isoleucine had been consumed. In contrast to the results obtained with excess leucine, consumption of excess isoleucine had no significant effect on the rate of valine oxidation in vivo. As part of an effort to explain the leucine-induced depletion of plasma valine and stimulation of valine oxidation, liver and muscle branched-chain aminotransferase and liver branched-chain ketoacid dehydrogenase activities were measured. Consumption of excess leucine had no significant effect on either muscle or liver aminotransferase activities, but was associated with a greater than two-fold increase in hepatic dehydrogenase activity. Also, consumption of excess leucine resulted in an increase in the percentage of active dehydrogenase from 43 ± 5% to 80 ± 4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.