Abstract

BackgroundThe de Morton Mobility Index (DEMMI) is a new mobility instrument that overcomes the limitations of existing instruments. It is the first mobility instrument that accurately measures the mobility of all older adults. The aim of this study was to provide a detailed report of investigations of the validity, responsiveness to change and minimal clinically important difference (MCID) of the DEMMI during its development in an older acute medical population.MethodsThis study was conducted using a head to head comparison design in two independent samples of older acute medical patients (development sample, n = 86; validation sample, n = 106). Consecutive patients (≥ 65 years) were assessed using the DEMMI, Barthel Index (BI) and Hierarchical Assessment of Balance and Mobility (HABAM) within 48 hours of hospital admission and discharge. Convergent and discriminant validity were investigated using Spearman's rho and known groups validity was investigated using a independent t test to compare DEMMI scores for patients who were discharged to home compared to inpatient rehabilitation. Criterion and distribution based methods were employed for estimating instrument responsiveness to change and the MCID.ResultsSignificant moderate to high correlations were identified between DEMMI and BI scores (r = 0.76 and r = 0.68) and DEMMI and HABAM scores (r = 0.91 and r = 0.92) in both samples. In both samples, DEMMI scores for patients who were discharged to home were significantly higher than for patients discharged to inpatient rehabilitation and provided evidence of known groups validity. Patients who were discharged to inpatient rehabilitation (n = 8) had a mean DEMMI score of 50.75 (sd = 11.29) at acute hospital discharge compared to patients who were discharged to home (n = 70) with a mean DEMMI score of 62.14 (sd = 18.41). MCID estimates were similar across samples using distribution and criterion based methods. The MCID for the DEMMI was 10 points on the 100 point interval scale. The DEMMI was significantly more responsive to change than the BI using criterion and distribution based methods in the validation sample.ConclusionThis study has validated the DEMMI in two independent samples of older acute medical patients. Estimates of its responsiveness and MCID have also been established. This study confirms that the DEMMI overcomes the limitations of the BI and HABAM and provides an advanced method for objectively assessing mobility for older acute medical patients.

Highlights

  • The de Morton Mobility Index (DEMMI) is a new mobility instrument that overcomes the limitations of existing instruments

  • DEMMI, Hierarchical Assessment of Balance and Mobility (HABAM) and Barthel Index (BI) assessments were completed at initial assessment for patients in the development (n = 86) and validation samples (n = 106)

  • The DEMMI had high correlation with measures of related constructs, low correlation with measures of other constructs (MMSE, APACHE 11 and Charlson co-morbidity Index) and patients who were discharged to home had significantly higher DEMMI scores than patients who were discharged to inpatient rehabilitation

Read more

Summary

Introduction

The de Morton Mobility Index (DEMMI) is a new mobility instrument that overcomes the limitations of existing instruments. Despite the many health benefits of maintaining physical independence in older age, two systematic reviews [1,2] identified no mobility instrument that could accurately measure and monitor changes in mobility for older patients from the acute hospital setting back to full health in the community These findings led to the development and validation of the de Morton Mobility Index (DEMMI) in the acute hospital setting. Sound instruments are essential to assist healthcare professionals to accurately measure and monitor changes in patient health, to assess the efficacy of interventions and to facilitate goal setting for therapeutic intervention Instrument measurement properties, such as validity, responsiveness to change and the minimal clinically important difference (MCID) are required for confidence in interpretation of measurements. It is important to establish that measurement properties are acceptable and that measurement stability is confirmed in an independent validation sample

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.